Theory I
Algorithm Design and Analysis

(2 - Trees: traversal and analysis of standard search trees)

Prof. Th. Ottmann
Binary trees for storing sets of keys (in the internal nodes of trees), such that the operations

- find
- insert
- delete (remove)

are supported.

Search tree property: All keys in the left subtree of a node \(p \) are smaller than the key of \(p \), and the key of \(p \) is smaller than all keys in the right subtree of \(p \).

Implementation:

```
    p
  /   \
/     \ 
  a     b
```


Tree structure depends on the order of insertions into the initially empty tree

Height can increase linearly, but it can also be in $O(\log n)$, more precisely $\lceil \log_2 (n+1) \rceil$.
Traversal of trees

Traversal of the nodes of a tree
• for output
• for calculating the sum, average, number of keys ...
• for changing the structure

Most important traversal orders:

1. **Preorder** = NLR (Node-Left-Right)
 first visit the root, then recursively the left and right subtree (if existent)

2. **Postorder** = LRN

3. **Inorder** = LNR

4. The mirror image versions of 1-3
Preorder traversal is recursively defined as follows:

Traversal of all nodes of a binary tree with root \(p \) in preorder:
- Visit \(p \),
- traverse the left subtree of \(p \) in preorder,
- traverse the right subtree of \(p \) in preorder.
Preorder implementation

// Preorder Node-Left-Right
void preOrder (){
 preOrder(root);
 System.out.println ();
}
void preOrder(SearchNode n){
 if (n == null) return;
 System.out.print (n.content+" ");
 preOrder(n.left);
 preOrder(n.right);
}

// Postorder Left-Right-Node
void postOrder(){
 postOrder(root);
 System.out.println ();
}
// ...
Inorder

The traversal order is: first the left subtree, then the root, then the right subtree:

```java
// Inorder Left-Node-Right
void inOrder()
{
    inOrder(root);
    System.out.println();
}
void inOrder(SearchNode n){
    if (n == null) return;
    inOrder(n.left);
    System.out.print (n.content+" ");
    inOrder(n.right);
}
```
Example

Preorder: 17, 11, 7, 14, 12, 22

Postorder: 7, 12, 14, 11, 22, 17

Inorder: 7, 11, 12, 14, 17, 22
Recursion can be avoided if instead of null-pointers so-called thread pointers to the successors or predecessors are used.
Example for Search, Insertion, Deletion
Idea: Create a search tree for the input sequence and output the keys by an inorder traversal.

Remark: Depending on the input sequence, the search tree may degenerate.

Complexity: Depends on internal path length

Worst case: Sorted input: $\Rightarrow \Omega(n^2)$ steps.

Best case: We get a complete search tree of minimal height of about $\log n$. Then n insertions and outputs are possible in time $O(n \log n)$.

Average case: ?
Two possible approaches to determine the internas path length:

1. **Random tree analysis**, i.e. average over all possible permutations of keys to be inserted (into the initially empty tree).

2. **Shape analysis**, i.e. average over all structurally different trees with \(n \) keys.

Difference of the expected values for the internal path:

1. \(\approx 1.386 \cdot n \log_2 n – 0.846 \cdot n + O(\log n) \)

2. \(\approx n \cdot \sqrt{\pi n} + O(n) \)
Reason for the difference

3,2,1 3,1,2 1,3,2 3,2,1 2,1,3 und 2,3,1

→ Random tree analysis counts more balanced trees more often.
Internal path length

Internal path length I: measure for judging the quality of a search tree t.

Recursive definition:

1. If t is empty, then

 $$I(t) = 0.$$

2. For a tree t with left subtree t_l and right subtree t_r:

 $$I(t) := I(t_l) + I(t_r) + \text{# nodes in } t.$$

Apparently:

$$I(t) = \sum_{p \text{ internal node in } t} \left(\text{depth}(p) + 1 \right)$$
For a tree t the **average search path length** is defined by:

$$D(t) = I(t)/n, \ n = \# \text{ internal nodes in } t$$

Question: What is the size of $D(t)$ in the

- best
- worst
- average

case for a tree t with n internal nodes?
Internal path: best case

We obtain a complete binary tree
Internal path: worst case
Random trees

- Without loss of generality, let \{1,\ldots,n\} be the keys to be inserted.
- Let \(s_1,\ldots,s_n\) be a random permutation of these keys.
- Hence, the probability that \(s_1\) has the value \(k\), \(P(s_1=k) = 1/n\).
- If \(k\) is the first key, \(k\) will be stored in the root.
- Then the left subtree contains \(k-1\) elements (the keys 1, \ldots, \(k-1\)) and the right subtree contains \(n-k\) elements (the keys \(k+1, \ldots,n\)).
Expected internal path length

$EI(n)$: Expectation for the internal path length of a randomly generated binary search tree with n nodes

Apparently we have:

$EI(0) = 0$

$EI(1) = 1$

$EI(n) = \frac{1}{n} \sum_{k=1}^{n} (EI(k - 1) + EI(n - k) + n)$

$= n + \frac{1}{n} \left(\sum_{k=1}^{n} EI(k - 1) + \sum_{k=1}^{n} EI(n - k) \right)$

Behauptung: $EI(n) \approx 1.386n \log_2 n - 0.846n + O(\log n)$.
Proof (1)

\[EI(n + 1) = (n + 1) + \frac{2}{n + 1} \sum_{k=0}^{n} EI(k) \]

and hence

\[(n + 1) * EI(n + 1) = (n + 1)^2 + 2 * \sum_{k=0}^{n} EI(k) \]

\[n * EI = r^2 + 2 * \sum_{k=0}^{n-1} EI(k) \]

From the last two equations it follows that

\[(n + 1)EI(n + 1) - n * EI(n) = 2n + 1 + 2 * EI(n) \]

\[(n + 1)EI(n + 1) = (n + 2)EI(n) + 2n + 1 \]

\[EI(n + 1) = \frac{2n + 1}{n + 1} + \frac{n + 2}{n + 1} EI(n) \cdot \]
Proof (2)

By induction over \(n \) it is possible to show that for all \(n \geq 1 \):

\[
EI(n) = 2(n + 1)H_n - 3n
\]

\[
H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}
\]

is the \(n \)-th harmonic number, which can be estimated as follows:

\[
H_n = \ln n + \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right)
\]

where \(\gamma = 0.5772\ldots \) the so-called Euler constant.
Proof (3)

Thus,

\[EI(n) = 2n \ln n - (3 - 2\gamma) \times n + 2 \ln n + 1 + 2\gamma + O\left(\frac{1}{n}\right) \]

and hence,

\[\frac{EI(n)}{n} = 2 \ln n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots \]

\[= \frac{2}{\log_2 e} \times \log_2 n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots \]

\[= \frac{2 \log_{10} 2}{\log_{10} e} \times \log_2 n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots \]

\[\approx 1.386 \log_2 n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots \]
Observations

- Search, insertion and deletion of a key in a randomly generated binary search tree with \(n \) keys can be done, on average, in \(O(\log_2 n) \) steps.
- In the worsten case, the complexity can be \(\Omega(n) \).
- One can show that the average distance of a node from the root in a randomly generated tree is only about 40% above the optimal value.
- However, by the restriction to the symmetrical successor, the behaviour becomes worse.
- If \(n^2 \) update operations are carried out in a randomly generated search tree with \(n \) keys, the expected average search path is only \(\Theta(\sqrt{n}) \).
Typical binary tree for a random sequence of keys
Resulting binary tree after n^2 updates
Question: What is the average search path length of a binary tree with N internal nodes if the average is made over all structurally different binary trees with N internal nodes?

Answer: Let

I_N = total internal path length of all structurally different binary trees with N internal nodes

B_N = number of all structurally different trees with N internal nodes

Then $I_N/B_N =$
Number of structurally different binary trees

27
Total internal path length of all trees with N nodes

• For each tree t with left subtree t_l and right subtree t_r:
The average search path length in a tree with N internal nodes (averaged over all structurally different trees with N internal nodes) is:

$$\frac{1}{N} \cdot \frac{I_N}{B_N}$$